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Abstract 

Analysis-of-variance (ANOVA) is a standard statistic method for assessment of the influ-

ence of various factors on fatigue resistance in the finite life domain. However, the previous 

research has shown that this method was not capable to determine with sufficient 

confidence if the build orientation, the thickness of allowance for machining, and the 

position in the production chamber affect fatigue resistance of Maraging steel MS1 

products made by direct metal laser sintering (DMLS) technology. To contribute to a better 

understanding of the subject, the results of fatigue test experiments were used for training 

four types of artificial neural networks (ANN) for fatigue resistance assessment in the finite 

life domain. Each ANN had different structure of inputs, which corresponded to a different 

combination of the factors of DMLS production process. The differences between the 

predictive abilities of the ANN were attributed to influences of the respective factors on 

the fatigue resistance of the material in the finite life domain. The approach was verified 

by the agreement with the conclusive results of ANOVA analyses. Furthermore, in the 

cases when ANOVA does not lead to a clear result, the analyses of the predictive ability of 

the ANNs strongly suggest that build orientation and thickness of allowance do not 

influence. Conversely, the position of a part in production chamber does affect the fatigue 

resistance in the finite life domain of Maraging steel MS1 produced by DMLS technology. 
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Introduction 

The key advantage of additive manufacturing (AM) technologies for mechanical designers 

is their ability to manufacture functionally graded parts1 and products with internal open 

spaces2, which enables topology optimization of product shape3 and, consequently, design 

of lightweight components4 and products with shape-integrated functionality5. Direct 

Metal Laser Sintering (DMLS), as the AM technology capable of manufacturing metal 

products, is increasingly used to implement the advantages of AM in automotive and 

aerospace industry. Mechanical components and structures in these applications are 

subjected to dynamic loads and fatigue, which often represents a critical aspect in design 

of these products. This problem may be addressed by improving product design6 and by 

better understanding of fatigue resistance of materials produced by DMLS7. 

The AM principle of layerwise building from melted powder particles creates more 

inhomogeneities in the microstructure of DMLS products than it is the case with traditional 

technologies8. The fundamental importance of the inhomogeneities for mechanical 

properties of materials was a motivation for concern and extensive studies of materials 

produced by DMLS. The majority of the research was focused on numerical9 and 

experimental studies of the influence of the DMLS process parameters10, as well as the 

post-processing procedures11, to static tensile strength and surface quality12 of AM 

products. Few papers deal with fatigue behaviour of AM materials, and these are mainly 

focused to light metals, dealing with influence of microstructure13 and heat treatment14 on 

fatigue resistance of aluminium alloys, as well as with general fatigue behaviour15, high-

cycle fatigue16, influence of build orientation17 and notch effects18 on fatigue resistance of 

titanium alloys. 

For these reasons, the authors of this paper in recent years turned their attention to 

the fatigue behaviour of steel materials produced by DMLS. Within the course of the 

Horizon 2020 project “Advanced design rules for optimal dynamic properties of additive 

manufacturing products (A_MADAM)”19 they carried out a systematic experimental 

campaign with the aim to determine which production conditions and post-processing 

procedures have substantial influence on fatigue resistance of Maraging steel MS120,21 (in 

further text abbreviated just as MS1) and the stainless steel PH122. A comparison of the 

results of fatigue tests obtained for the two steel materials is presented in the literature23. 

The experimental campaign was devised using the Design-of-Experiment approach and the 

results were analysed using the Analysis-of-Variance (ANOVA) methodology24. The 

results of the research established the influence of post-processing procedures and their 

order on the fatigue resistance of the MS1 produced by DMLS21, as well as the influence 

of build orientation, post-processing procedures and their order on the fatigue resistance of 

the stainless steel PH1 produced by DMLS22. However, the application of ANOVA 

methodology to the experimental results could not confirm the influence of build 

orientation and the thickness of allowance for machining on the fatigue resistance of MS1 

produced by DMLS21. While the result is yet to be published and discussed, the ANOVA 

analysis was also not able to confirm the influence of position of a sample in production 

chamber with respect to inert gas flow on the fatigue resistance of the MS1 produced by 

DMLS. In principle, the ANOVA methodology may only confirm the existence of 



influence of certain factors to the observed data. On the other hand, the inability of the 

ANOVA method to state such influence does not necessarily mean that it does not exist, 

but that further studies may be needed and may perhaps confirm this effect. However, 

considering the high costs of DMLS technology and long duration of the fatigue tests, other 

methods for studying the already available experimental data are worthy of research. 

While ANOVA may be nonlinear across factor levels, it is linear in parameters, and 

it is considered to be a special case of linear regression25. On the other hand, fatigue 

resistance is a highly nonlinear phenomenon, which is confirmed to be influenced by 

several complex factors such as material microstructure and surface quality26, which, in the 

case of DMLS technology, depend on multitude of production conditions and post-

processing procedures. The complexity of the factors and their multi-level interactions 

motivated the authors of this paper to try to use artificial neural networks (abbreviated as 

ANNs, and ANN in singular) to better understand the influence of individual factors on the 

fatigue resistance in the finite life domain of MS1 produced by DMLS. 

ANNs are machine learning computing systems capable of developing complex 

relationships between input and output quantities, open to handling different types of 

inputs, such as continuous, discrete and fuzzy variables. Their ability to grasp complex 

dependencies between the inputs and outputs was already successfully used for studies of 

dimensional stability27, thermo-mechanical internal stresses28 and mechanical properties29 

of AM products. The aspects of production processes such as scanning strategies30 and 

material consumption31 were also subjects of ANN-based investigations. ANNs were also 

used for prediction of fatigue life of composite materials32, but despite the complexity of 

fatigue and the DMLS technology, the application of ANNs for studies of fatigue behaviour 

of DMLS products started only recently. The initial step in that direction was a study of 

high-cycle fatigue of stainless steel33 that used ANNs trained on datasets describing 

production process parameters and post-processing procedures. The obtained results 

motivated further research of application of ANNs and other machine learning methods34, 

including propositions of a two-phases methodology for in-situ prediction of fatigue life35. 

This study gave way to a potential roadmap to establish a data-driven evaluation platform 

that would use a large number of experimental data, arising from tests on miniature 

specimens36, in order to reduce production costs. A recent study37 has shown that ANNs 

trained by support vector machine (SVM) method were able to achieve coefficients of 

determination between the predicted and experimental fatigue lives of Ti-6Al-4V alloy as 

high as 0.99. 

The research presented in this paper does not use ANNs to provide superior 

predictions of fatigue life of materials produced by DMLS in comparison with standard 

methods, as it was the case with the research efforts presented above32-37. Instead, it uses 

ANNs only as a complementary tool, which enables better understanding of the influence 

of production factors on the fatigue resistance in finite life domain that standard methods 

cannot clearly resolve. It is important to notice that the production factors, whose influence 

on the fatigue resistance in finite life domain is the subject of the study, are the inputs of 

the used ANNs, and not their outputs, as it is the case in majority of the studies that use 

ANNs. This fact reflects on the methodology used in the paper, since subject of the study 

are the differences between the predictive abilities of different ANNs and not the predictive 

abilities of individual ANNs. The authors believe that the approach, which may be extended 



to other applications, is a useful novelty, as they are not aware of any similar study in the 

existing scientific literature.  

Experiments 

The experimental data used in this study represent a part of the results of the experimental 

campaign performed within the A_MADAM19 project. The project, among the other 

activities, comprises a systematic study of the fatigue behaviour of AM steels (Maraging 

steel MS1, Stainless steel PH1 and Maraging stainless steel CX). The part of the results 

that is published is briefly mentioned in the introduction, and the subject of the study in 

this paper concerns the results of fatigue testing of samples made from MS1 using DMLS 

technology. Maraging steel MS1 is a tool steel especially designed for AM with chemical 

composition that corresponds to DIN 1.2709 or ASTM 18Ni300 steel. The details of the 

chemical composition and the relevant mechanical properties of the material are given in 

the references20,21. After AM production, the MS1 parts are subjected to heat treatment by 

simple thermal age-hardening that leads to excellent hardness and strength, which makes 

MS1 an optimal choice for tooling applications. The intensive dynamic loads to which tools 

are exposed in exploitation raise interest for studies of fatigue behaviour of MS1. 

Fatigue testing was performed according to the ISO 1143 standard38, which 

specifies the experimental method for fatigue testing of metallic materials using bending 

of rotating bars. The specifications describe the accuracy of the testing apparatus, the 

testing procedure and presentation of the fatigue testing results. The standard, as well as 

the references20-23, describe also in details the shape, dimensions and preparation of the 

samples, which consist of two mounting heads and a gage between them. During a test, a 

sample rotates under a constant bending moment over the gage. As a consequence, the 

sample undergoes cyclic symmetric loading (R = –1, zero mean stress) with frequency 

equal to the rotation speed, and the loading conditions generate fatigue load at the sample 

gage. Test is carried out until the sample breaks (“failure”) or until a pre-determined 

number of loading cycles is achieved without failure of the sample (“run-out”). The run-

out criterion in this research was set to be 107 cycles without failure, which is usual for 

fatigue testing of steels20. The experimental data that describe a test are the maximal 

bending stress at the sample gage (denoted as S), and, in the case of failure, the number of 

cycles until the break of the sample (denoted as N). The other details of the implementation 

of the testing procedure (such as description of the control of dimensions and surface 

quality of the samples, the machine and the loading conditions used for testing) may be 

found in the references20,21. 

According to the experimental plan used in the project, the samples were divided 

into 16 sets. The samples of each individual set were manufactured under the same 

production conditions and, after the production, treated by the same post-processing 

procedures. The differences between production conditions (build orientation and position 

of the samples in production chamber) and post-processing procedures (the order and 

application of heat treatment and surface treatment procedures) enabled study of those 

factors on the fatigue behaviour of the MS1 manufactured by DMLS. The details of the 

manufacturing and post-processing procedures used for production of the samples (such as 

production machine and production parameter settings) are also presented in 

references20,21. 



The production conditions and post-processing procedures for each of the sample 

sets are presented in the Table 1 that uses the coded conventions defined in the A_MADAM 

project. The first two columns of the Table 1 contain the numeric and alphanumeric codes 

of the sets, and the third column represents the number of the samples in the respective 

sample set. According to the coding system used in the project and this paper, each sample 

set has a unique short (numeric) and long (alphanumeric) code, where the numeric code is 

useful for simple referencing of a sample set, while the alphanumeric code is useful because 

it describes the manufacturing conditions and post-processing procedures used for each of 

the sets. 

Numeric 

code 

Alphanumeric 

code 
Size 

Production Post-process 

Orient. 

 

Pos. 

(x) 

Heat 

(Yes) 

Machining 

(mm allowance) 

1 Vx.STM 10 |   0.5 

2 Hx.STM 10 ⎯   0.5 

3 Sx.STM 10 /   0.5 

4 Vx.ST3 15 ⎯   3 

5 Hx.ST3 10 /   3 

6 Sx.ST3 10 |   3 

7 Vx.ST1 10 |   1 

8 Vx.ST2 10 |   2 

9 Vx.ST4 10 |   4 

10 Vx.SNN 15 |  No No 

11 Vx.SMN 10 |  No 0.5 

12 Vx.STN 15 |   No 

13 Vx.MSN 15 |  No 0.5 

14 VU.TMS 15 | U  0.5 

15 VM.TMS 15 | M  0.5 

16 VD.TMS 15 | D  0.5 

Table 1: Sample sets that were subject of the standard fatigue tests 

The alphanumeric code consists of five symbols divided in two groups separated 

by a dot. The first group of the symbols represents production conditions, and the second 

group of the symbols represent the post-processing conditions. 

The sample sets were manufactured under the production conditions described in 

the fourth and the fifth columns of the Table 1: 

− orientation of the longitudinal axis of the samples during manufacturing process 

(building orientation), described in the fourth column of the Table 1, which was 

either vertical (represented by “|”), horizontal (represented by “⎯”) or made an 

angle of 450 with the horizontal (represented by “/”) (Figure 1 left); the build 

orientation is coded by the first symbol of the alphanumeric code by letter “V” for 

vertical, letter “H” for horizontal and letter “S” for slanted orientation of the sample 

axis; 



− position of the samples in the production chamber with respect to the inert gas flow 

(used to remove the burnt particles created during the laser sintering process) which 

may be upstream, midstream, downstream (Figure 1 right) or undefined; due to 

their mass, the inert gas flow cannot remove all the burnt particles from the 

production chamber. Since the burnt particles may be incorporated into a 

manufactured sample and act as material defects and sources of initial cracks, the 

samples manufactured in downstream positions may have lower fatigue resistance. 

The position of the samples of a set in the production chamber is coded by the 

second symbol of the alphanumeric code, which may be “U” for the upstream 

positions, “M” for the midstream positions, “D” for downstream positions and “x” 

for undefined positions; the undefined position means that the samples of the set 

were manufactured in positions with different categories (as it usually occurs with 

products in industry), or that different parts of samples were placed in different 

zones with respect to the inert gas flow (e.g. samples with horizontal axis oriented 

along the gas stream); the positions of the samples are indicated in the Table 1, 

where the code “x” was considered as default value and was omitted; 

    

Figure 1: Build orientations of the samples (left) 

and the definition of the classes of positions within the production chamber (right) 

Due to the internal inhomogeneities, the influence of the post-processing procedures (and 

in particular of their order) on the fatigue response of steel manufactured by DMLS may 

be different than it is the case with steels manufactured by traditional technologies21,22. The 

post-processing procedures consisted of combinations of shot-peening, machining and heat 

treatment in variable orders. All the sample sets underwent shot-peening using stainless 

steel spherical shots with 400 μm diameter under a flow pressure of 5 bar. Table 1 also 

shows if a sample set underwent heat treatment and machining to improve surface quality. 

The heat treatment was carried out according to the specifications by the supplier of the 

powder material, as described in references20,21. The application of a certain post-

processing procedure and their order are described by the second part of the alphanumeric 

code of the set, as the ending triplet of symbols represents the actual sequence of the three 

post-processing stages by the respective codes: 

− “S” for micro-shot peening 

− “T” for heat treatment; 

− “M”,”1”,”2”,”3” and “4” represent machining, where the number indicates the 

thickness of the layer of material removed during machining (in millimetres); such 



samples are produced with the respective allowance and reached the dimensions 

specified by the ISO 1143 after removal of the material; the code “M” stands for 

allowance of 0.5 mm; 

− “N” specifies that a post-processing step is not performed; 

The post-processing procedures (without any indication of the order, unlike in the 

alphanumeric codes) are listed in the sixth (heat-treatment) and seventh (machining) 

column of Table 1. To increase the clarity of the table data, the value “Yes” was considered 

as the default value of the sixth column and was omitted. 

Models and results 

This chapter introduces the methods for prediction of fatigue resistance in the finite life 

domain used in the study presented in this paper. The basic aim of a method for prediction 

of fatigue resistance in the finite life domain is to predict the number of cycles to fatigue N 

based on a given bending stress S and other inputs. The difference between different 

prediction methods are those other inputs and mathematical models that utilize the input 

data to calculate the predictions. The predictive abilities of different methods are compared 

by calculation of statistical indicators that measure the difference between the predictions 

of the respective models and the experimental data, where better performance of a method 

is indicated by lower mean absolute error (MAE), lower mean absolute percentage error 

(MAPE), higher correlation coefficient (r) and higher coefficient of determination (R2). 

 
Figure 2: Experimental results of fatigue testing in the finite life domain 

The analysis of the fatigue behaviour in the finite life domain presented in this study 

considers only the samples that underwent failure during the tests described in the previous 

chapter. During the experiments, 112 samples (out of 195 tested from all 16 sets) 

underwent failure, thus providing the data about both the number of cycles to failure N and 

the maximal bending stress S. Those experimental results are presented in the Figure 2. 

The data about the maximal bending stress S of the remaining 83 samples (“run-outs”) are 

relevant for the fatigue behaviour in infinite life domain. 

The obtained results were subject of the studies presented in the literature20,21, 

which were based on prediction methods specified by the ISO 1210739 standard, both in 

the finite and infinite life domain. In the research presented in this paper, the authors 



investigated the potentials of application of ANN to the same experimental results. As 

applicability of the ANN rises with the number of input data, the authors decided to focus 

on the fatigue resistance in the finite life domain. Since the problems met by previous 

research20,21 motivated the study presented in this paper, some of its results will be briefly 

presented here to serve as a reference point for the results of the research presented here.  

Standard methods 

According to International Standard ISO 1210739, the fatigue resistance of a material in the 

finite life domain may be represented by the S-N curve (or the S-N relationship), which 

uses a linear mathematical model of the form 

 x b ay= −  (1) 

where x = log(N) and y = S or y = log(S), whichever gives better plot linearity, and a and b 

are constants obtained by fitting of the experimental results; in the equation (1), log 

represents logarithm for base ten. 

The simplest (“brute-force”) approach to application of the ISO 12107 standard 

method would be to represent all the obtained experimental results using a common S-N 

curve. By performing the linear regression analysis of dependence of x = log(N) on 

y = log(S) using all the experimental results presented in the Figure 2, one obtains the 

constants b = 11.69 and a = 1.92, with MAE = 0.474, MAPE = 7.986%, r = 0.244 and 

R2 = 0.059. The low value of correlation coefficient r quantifies the visible scattering of 

the experimental results that may be observed in Figure 2, and the low value of coefficient 

of determination R2 indicates that only around 6% of the variation of the dependent variable 

(log N) in this set may be explained by the variation of the independent variable (log S). 

Therefore, the approach that would predict number of cycles to failure N in dependence 

only on the stress amplitude S, using the model (1) and the data presented in Figure 2, 

would have poor performance, and is, therefore, not used in practice. The poor performance 

of the “brute-force” approach indicates that the variations of the observed results are not 

random, and that, besides the bending stress S, the production conditions and post-

processing procedures influence fatigue behaviour of the samples in finite life domain. 

Set ID b a  Set ID b a 

1 23.564 6.043  9 21.664 5.323 

2 24.311 6.237  10 38.988 12.177 

3 20.712 4.981  11 30.201 9.065 

4 29.868 8.282  12 42.087 13.444 

5 30.174 8.335  13 28.688 8.261 

6 27.465 7.361  14 42.174 13.029 

7 18.970 4.424  15 56.619 18.079 

8 20.932 5.056  16 44.619 13.635 

Table 2: Coefficients of determined S-N curves 

For these reasons, the usual approach to application of the ISO 12107 standard 

model consists in determination of a set of S-N curves, where each of the S-N curves 

correspond to a specific combination of production conditions and post-processing 

conditions. In this case, it led to the determination of a S-N curve for each of sample sets 

listed in the Table 1. The S-N curves for each of the sixteen sample sets were determined 



according to specifications of ISO 12107, considering 4-6 stress levels per set, with two 

tests at each level. The stress levels were selected to cover a broad range, from the stress 

amplitudes that led to 104-105 lifecycles to those that led to runouts, for each of the sets. 

The constants a and b, determined by linear regression of experimental results for each of 

the sets are given in the Table 2, and the statistical indicators of the difference between the 

predictions of the model (1) using experimental results for individual sets are given in the 

Table 3. The obtained results show strong correlation between the measured and predicted 

fatigue lives, as well as high explanatory power of the method. In other words, a model 

that consists of 16 equations of type (1) provides a successful prediction of the fatigue life 

of MS1 produced by DMLS in the finite life domain. 

Table 3: Results of statistical analysis 

In order to assess the influence of individual factors (production conditions or post-

processing conditions) on the fatigue behaviour, the differences between the experimental 

results and the predictions of S-N curves presented by the Table 2 were subjected to the 

ANOVA20,21. In essence, the ANOVA is able to reject the so-called null hypothesis, which 

means that differences between fatigue resistances observed for different levels of a factor 

are occurring randomly. One way to quantify validity of the null hypothesis is calculation 

of the quantity called “p-value”. This term represents the probability of getting the actual 

experimental results, and consequently the related Fisher’s ratio (ratio between the variance 

of fatigue strength between sets and variance of the fatigue strength within sets), only due 

to random variations, i.e., when the null hypothesis is true. If p is smaller than the 

significance value α (maximum admitted probability of rejecting the null-hypothesis when 

it is true, usually set as 0.05), then the null-hypothesis may be rejected. The rejection of the 

null hypothesis indicates that the different levels of the factor are causing the observed 

differences between fatigue resistances, i.e., that the factor influences the fatigue 

behaviour. However, if p is higher than the significance value α, ANOVA is not able to 

reject the null hypothesis, and the influence of the factor on the fatigue behaviour in finite 

life domain may not be assessed. As mentioned in the introduction, the application of the 

ANOVA methodology to the data presented in Figure 2 and Table 2 was able to confirm 

the influence of the post-processing procedures (p ≈ 3∙10-5 for heat treatment, p ≈ 1∙10-5 for 

machining and p ≈ 1∙10-6 for interaction of the two factors in two-factor analysis of results 

of tests on sets 1 and 10 to 13) and of their order (p ≈ 0.038 for the order of shot-peening 

and machining for one-factor analysis  of tests on sets 11 and 13) on the fatigue behaviour 

of MS1. However, it was not able to assess the influences of build orientation (p ≈ 0.65 

and p ≈ 0.28 for interaction with thickness for allowance for two-factor analysis of results 

Set ID R2 r MAE MAPE 
 Set 

ID 
R2 r MAE MAPE 

1 0.991 0.995 0.016 0.242%  9 0.942 0.971 0.057 0.872% 

2 0.985 0.992 0.018 0.261%  10 0.845 0.919 0.276 4.547% 

3 0.995 0.998 0.011 0.16%  11 0.880 0.938 0.212 3.377% 

4 0.827 0.91 0.159 2.46%  12 0.673 0.821 0.271 4.997% 

5 0.899 0.948 0.119 1.837%  13 0.946 0.973 0.128 2.079% 

6 0.845 0.919 0.173 2.777%  14 0.911 0.954 0.153 2.682% 

7 0.785 0.886 0.097 1.456%  15 0.975 0.987 0.075 1.154% 

8 0.951 0.975 0.043 0.64%  16 0.765 0.875 0.182 2.938% 



of tests on sets 1 to 6), the thickness of allowance for machining (p ≈ 0.19 for one-factor 

analysis  of tests on sets 1, 4, 7-9), and the position of a sample in the production chamber 

(p ≈ 0.51 for one-factor analysis of tests on sets 14-16). The details of the ANOVA 

methodology, the obtained results and interpretation are given in the references20,21. 

ANN models 

As explained in the introduction, ANNs represent a possible choice for description of a 

such a complex phenomenon as fatigue. A good ANN for description of fatigue life should 

predict the number of cycles to failure N with sufficient prediction ability, using as inputs 

the bending stress S and the data about the relevant production conditions and post-

processing procedures. 

The approach presented in this paper uses ANNs to assess the influence of the 

factors of interest (production conditions and post-processing procedure) to fatigue 

resistance of MS1 in finite life domain. The main idea of the approach is based on the fact 

that predictive abilities of different ANNs depend on their design, including selection of 

their inputs. Therefore, if a factor is relevant for fatigue behaviour of studied material, then 

the ANNs that have the factor as one of the inputs will have higher predictive abilities of 

fatigue life than the ANNs that do not consider that factor. Vice versa, if a factor is not 

relevant for fatigue behaviour of the studied material, then the predictive abilities of ANNs 

that have that factor as one of the inputs will be similar to the predictive abilities of the 

ANNs that do not consider that factor.  

With the described aim were designed four feedforward ANNs. The output of the 

ANNs described the number of cycles to failure N using x = log(N). The differences 

between them were different structures of the input layers (i.e., the input data) and the 

consequential structures of the hidden layers. The concept of the design of the structures 

of the input layers was governed by the following requests: 

D.1.The inputs of the ANNs comprise numeric value of stress amplitude S and 

descriptors of some of the factors of interest; 

D.2.The complexity of structures of input layers is gradually increasing, so that the 

input structure of a more complex ANN has the input structures of the less complex 

ANNs as subsets; 

D.3.The difference between the ANNs with subsequent level of complexity comprises 

description of only one of the factors of interest, so the difference between 

predictive abilities of the ANNs may be attributed to the influence of that factor; 

D.4.Two of the ANNs with lower complexities (hereinafter referred to as ANN#1 and 

ANN#2) have as inputs the factors for which ANOVA has confirmed their 

influence on the fatigue resistance of the samples. The difference between the 

prediction abilities of ANN#1 and ANN#2 is used to check the validity of the 

approach used in this study. 

D.5.The other two ANNs, with higher complexities (hereinafter referred to as ANN#3 

and ANN#4), apart from the abovementioned inputs, have as additional inputs the 

factors whose effect was not possible to determine using ANOVA. The differences 

between the prediction abilities of the two ANNs with lower complexity and the 

two ANNs with higher complexity are the potential sources of information for 

assessments that ANOVA was not able to provide. 

With the described concept, the input structures of the ANNs are designed as follows: 



1) ANN#1 predicts fatigue life of a sample in the finite life domain on the basis of 

applied load and post-processing methods used after sample production. Since all 

samples for study of fatigue behaviour are post-processed by shot peening, two 

binary variables are introduced in order to describe the application (or absence) of 

the corresponding type of post-processing method (one binary variable to describe 

the application of machining, and the other to describe the application of heat 

treatment). The input datasets of ANN#1 consist of these two binary variables and 

experimentally determined y = log(S). Therefore, the neural network ANN#1 has 3 

input nodes. 

2) ANN#2 predicts fatigue life of a sample in the finite life domain on the basis of the 

applied load, performed post-processing methods and the order of their 

application. To prepare the qualitative data for the ANN model, all the studied 

combinations of post-processing methods were first represented by one categorical 

variable, and then, using dummy encoding, that categorical variable was 

transformed into five binary variables which were used as neural network inputs 

along with the experimentally determined y = log(S). Therefore, the neural network 

ANN#2 has 6 input nodes. 

3) ANN#3 assumes existence of the influence of sample position in the production 

chamber with respect to gas flow on fatigue behaviour, and that, therefore, this 

factor should be used for prediction of fatigue life in the finite life domain. For 

estimation of the fatigue life of a sample, besides the position of the sample, this 

ANN uses data about the applied load, the performed post-processing methods and 

the order of their application. To prepare the qualitative data for this ANN, all 

combinations of post-processing methods and all categories of sample positions 

were first represented by two categorical variables, and then, using dummy 

encoding, these variables were transformed into eight binary variables, which were, 

along with experimentally determined y = log(S), used as neural network inputs. 

Therefore, the neural network ANN#3 has 9 input nodes. 

4) ANN#4 predicts fatigue life of a sample in the finite life domain on the basis of 

applied load, performed post-processing methods and all the known production 

conditions, therefore build orientation, sample position in the chamber and 

thickness of allowance for manufacturing. In the process of data preparation for 

neural network modelling, all combinations of post-processing methods, all 

categories of sample positions and all build orientations were represented by three 

categorical variables, which were further transformed by dummy encoding into ten 

binary variables. These binary variables, along with the value of allowance for 

manufacturing and the experimentally determined y = log(S) were used as ANN#4 

input data. Thus, the ANN#4 has 12 input nodes. 

It may be noted that the difference between the predictions of ANN#1 and ANN#2 may be 

attributed to the possible influence of the order of the post-processing steps. The difference 

between the predictions of ANN#2 and ANN#3 may be related to the possible effect of the 

position of a sample in the production chamber. Finally, the difference between the 

predictions of ANN#3 and ANN#4 may be related to the possible influences of build 

orientation and thickness of allowance for machining. 

The concept of the structure of the ANNs’ inputs presented above restricted their 

design, and the structure of ANNs described above is not the only solution that satisfies the 



requests D.1–D.5, but there are no many choices as it may seem at the first glance. The 

structures of the input of ANN#1 and ANN#2 are essentially completely determined by 

these requests because the description of the order of the post-processing procedures 

(described by ANN#2) may not be introduced before the introduction of the post-

processing procedures (described by ANN#1). Therefore, the only input factors whose 

order may be changed, while simultaneously satisfying requests D.4 and D.5, are the 

descriptions of the position of a sample in production chamber with respect to inert gas 

flow, build orientation and thickness of allowance for machining. However, the results 

obtaining by variation of the order of inclusion of production process factors into input 

layer structure of ANNs led to the same conclusions about the influence of the factors as 

the ANNs described above, and, therefore, the obtained numerical results will not be 

presented in this paper. 

The structure of an ANN depends also on the amount of data that may be used for 

its training and verification. The limited amount of the input data (112 points presented in 

the Figure 2) brings the danger of “overtraining” of an ANN, and, therefore, attention 

should be dedicated to the process of design of the ANNs. The number of the hidden layers 

of networks and the activation functions of the ANNs were determined through the process 

of hyperparameter tuning40, which enables definition of the architecture of the ANN with 

the desired level of generalization. The hyperparameter tuning method balances between 

the opposing requests for better approximation of complex relationships between the inputs 

and outputs (which requires increase of the number of ANN nodes) and the reduction of 

the risk of ANN overtraining (which requires decrease of the number of ANN nodes). This 

maximizes the accuracy of predictions on unknown datasets, hence the datasets that are not 

used in the process of the ANN training. During the neural network training process, Adam 

optimization algorithm41 with learning rate α = 0.001, exponential decay rate for first 

moment estimates β1 = 0.9, exponential decay rate for second moments estimates β2 = 

0.999, and zero-value ε = 10−8 was used to update the network parameters. 

The ANNs were developed using the datasets that consisted of values y = log(S), 

x = log(N), the data describing production conditions, and the data describing the applied 

post-processing procedure for each of the samples that underwent failure during the fatigue 

testing. A total of 92 datasets were used for network training, whereas 20 datasets (close to 

20% of total) were used for validation of the developed neural networks. The collections 

of datasets for training and validation were formed randomly, but with restriction that both 

collections had to contain samples from all sets under the study. In addition, the process of 

network training was repeated using different training and validation datasets to check the 

stability of the obtained results.  
ANN ANN#1 ANN#2 ANN#3 ANN#4 

Input 3 6 9 12 

Hidden 5 5 5 8 

Output 1 1 1 1 

Table 4: Number of the neurons in the layers of the developed ANNs 

The ANNs obtained by the described procedure had one hidden layer of neurons. The 

activation function of the neuron in the output layer is linear (also known as “identity”) 

function, whereas the activation functions of the neurons in the input and hidden layers are 

of the rectified linear unit (ReLU) type. The optimal number of nodes in the hidden layer 

is presented in the Table 4, along with the number of nodes in the input and output layers. 



Results of prediction of fatigue life obtained by the developed ANN are  compared 

to the experimentally obtained data. The validity of the models is estimated by statistical 

analyses of differences between the experimental and predicted results for all 112 datasets 

using the same statistic indicators as in the case of models based on the standard linear 

regression. Since ANN models are trained on 92 out of 112 datasets, the results of statistical 

analyses are also presented separately for training and validation datasets. The Table 5 

presents these results along the results of predictions obtained (for the same datasets), using 

the common S-N curve and the set of 16 S-N curves, as discussed in the previous section. 

Analysis and discussion 

By the concept of the study, the influence of the production conditions and post-processing 

procedures on the fatigue behaviour of MS1 produced by DMLS will be studied by 

comparison of the predictive abilities of different ANNs. Nevertheless, further comments 

will also be made about the comparison of the prediction abilities of the ANNs and methods 

based on ISO 12107 standard. 
 Model Common 

S-N 

Set of 

S-N 

ANN 

Indicator Dataset #1 #2 #3 #4 

R2 

All data 0.06 0.90 0.68 0.83 0.89 0.90 

Training 0.07 0.91 0.70 0.83 0.89 0.91 

Validation 0.02 0.85 0.58 0.80 0.86 0.86 

r 

All 0.24 0.95 0.83 0.91 0.94 0.95 

Training 0.25 0.96 0.84 0.91 0.94 0.95 

Validation 0.19 0.93 0.77 0.90 0.93 0.93 

MAE 

All data 0.47 0.15 0.26 0.20 0.16 0.15 

Training 0.46 0.13 0.25 0.19 0.15 0.14 

Validation 0.52 0.20 0.31 0.24 0.19 0.20 

MAPE 

All data 7.99% 2.39% 4.28% 3.21% 2.55% 2.42% 

Training 7.79% 2.19% 4.07% 3.05% 2.42% 2.24% 

Validation 8.87% 3.29% 5.28% 3.97% 3.15% 3.24% 

Table 5: Comparison of predictive abilities of different models for fatigue behaviour prediction 

The comparison of the predictive abilities of the ANN#1 (which has the lowest 

prediction ability of all the ANNs) and the common S-N curve shows that adding 

explanatory variables describing the parameters of the post-processing procedure results in 

a profoundly higher explanatory power (more than tenfold increase of coefficient of 

determination R2, e.g., from 0.06 to 0.68 for all data). Prediction accuracy is also 

significantly enhanced (more than three times higher correlation coefficient r, e.g., from 

0.24 to 0.83 for all data), which further confirms the established knowledge that the fatigue 

behaviour of DMLS products is strongly affected by the applied post-processing 

methods21. The introduction of description of the order of the post-processing further 

contributes to a clear increase of the predictive ability of ANN#2 in comparison with 

ANN#1. In particular, R2 increases from 0.68 to 0.83 for all data, which means that the part 

of variation of the dependent variable that cannot be explained by the variations of input 

variables, 1–R2, decreased almost twice, from 0.32 to 0.17. This outcome confirms that the 

order of post-processing steps does influence the fatigue resistance of DMLS products21. 

The agreement between the results obtained by comparison between the predictive 

abilities of the common S-N curve, ANN#1 and ANN#2, on one side, and the results of 

previous research21 on the other side, verifies the approach to the analysis of the influence 



of the studied factors on the fatigue resistance developed in this paper. In other words, the 

ANN approach confirms that the influence of a factor is significant when ANOVA leads 

to the same conclusion. Such an outcome encourages further application of the ANN 

approach to additional cases, when ANOVA was not able to establish the significance of 

the studied factor (i.e.: was unable to reject the null hypothesis), which was the primary 

goal of the present study. 

  
Figure 3: Experimental (target) values and results of prediction by ANN#2 (left) and ANN#3 (right) 

for samples with defined positions with respect to inert gas flow 

The inclusion of the position of a sample in the production chamber with respect to 

inert gas flow as additional explanatory variable increases the prediction ability of the 

ANN. This conclusion is suggested by higher values of the coefficient of determination R2 

and correlation coefficients r for predictions of the ANN#3 network in comparison with 

their values for ANN#2. The Table 5 shows that R2 values increase from 0.80 to 0.86 in 

validation dataset, and from 0.83 to 0.89 for the training dataset and all data. In other words, 

the variation of the dependent variable that cannot be explained by variation of input 

variables, 1–R2, is reduced by one third, from 0.17 to 0.11, by the introduction of the 

position of a sample in production chamber as input variable. The result is of particular 

interest and worthy of further analysis, because it suggests that the position of the samples 

in production chamber has influence on the fatigue resistance in the finite life domain of 

the MS1 produced by DMLS, which ANOVA was not able to prove. 

To further study the difference between the predictions of the ANN#2 and ANN#3 

(and thus the influence of the position of a sample to its fatigue resistance), the authors 

compared predictions of the two ANNs for a subset of the experimental data that consisted 

only of the samples with defined positions, which underwent failure during fatigue testing. 

As Table 1 shows, only 45 samples were manufactured with defined positions with respect 

to the inert gas flow, and only 18 of them underwent failure during testing. The 

experimental results and predictions of ANN#2 and ANN#3 for those 18 samples are 

shown in Figure 3. The dotted lines indicate the target of the prediction (i.e.: equal values 

for experimental results and predictions), whereas the full lines represent the actual 

dependences between the predictions and the experimental results obtained by linear 

regression. The statistical indicators of differences between the experimental results and 

predictions are given in the Table 6. Both the Figure 3 and Table 6 clearly show that the 

ANN#3 has much higher predictive ability than the ANN#2 for the samples with known 

position in production chamber, thus indicating that the position of a sample with respect 

to the inert gas flow influences its fatigue resistance in the finite life domain.  



Model R2 r MAE MAPE 

ANN#2 0.52 0.76 0.35 5.68 

ANN#3  0.88 0.94 0.14 2.34 

Table 6: Comparison of prediction capabilities of ANN#2 and ANN#3 

for samples with defined positions with respect to inert gas flow 

Further analysis of the results in Table 5 clearly shows that the predictive ability of 

ANN#4 is not significantly better than that of ANN#3, because the coefficient of 

determination R2 for training set if 0.86 for both ANNs, while it increases from 0.89 to 

0.91 and 0.90 for training dataset and all data, respectively. With more accurate 

calculations of the values, the increase of coefficient of determination from ANN#3 to 

ANN#4 is five times smaller (0.012) than the increase of the predictive ability from ANN#2 

to ANN#3 (0.058). This observation suggests that the build orientation and thicknesses of 

allowance for machining larger than 0.5 mm do not influence the fatigue resistance of MS1 

manufactured by DMLS, thus providing a quantitative support to similar claims and 

potential explanations made in references21. 

   
Figure 4: Experimental (target) values and results of prediction 

by ANN#3 (left) and the set of S-N curves (right) 

The predictive ability of the ANNs may be compared also to the predictive ability 

of the set of S-N curves. Figure 4 presents a comparison between the experimental results 

(which serve as target values) and predictions by ANN#3 and the set of S-N curves. Like 

in Figure 3, the dotted lines indicate the target of the prediction (i.e.: equal values for 

experimental results and predictions), whereas the full lines represent the dependences 

between the predictions and experimental results obtained by linear regression. Both Figure 

3 and Table 5 indicate that the ANN#3 and the set of 16 S-N curves have similar prediction 

abilities. 

The inability of the developed ANNs to have higher prediction ability than the set 

of S-N curves shows that the limited set of input data prevents development of an ANN 

with sufficiently complex structure to overcome predictive ability of the set of S-N curves. 

If considerably more input data were available, the hyperparameter tuning procedure could 

lead to ANNs with more hidden layers, which might have higher prediction abilities than 

those of the ANNs studied in the paper. However, creation of new experimental data would 

also lead to considerably higher costs for production and testing of additional samples. 

Nevertheless, as explained in the introduction, the goal of the research presented in this 

paper was not to develop an ANN that would be regarded as a superior prediction tool. The 

subject here was to compare prediction abilities of different ANNs developed using the 



same datasets, with the aim of understanding better the influence of certain production 

conditions and post-processing procedures on the fatigue behaviour. This study introduces 

the use of ANNs as a complementary tool to assess the significance of potentially relevant 

factors for fatigue behaviour. 

Conclusion 

In this paper is presented a novel approach to assess the influence of production conditions 

and post-processing procedures on the fatigue resistance of the MS1 in the finite life 

domain. The approach aims at compensating for the lack of ANOVA methodology to 

assess the influences in some cases. In particular, this study is related to the inability of 

ANOVA to assess the influence of build orientation, of the thickness of allowance for 

machining, and of the position in the production chamber, on the fatigue resistance of MS1 

produced by DMLS technology. 

With this aim, four different ANNs for prediction of the fatigue life of MS samples 

in finite life domain were designed. The complexity of the input structure of the ANNs was 

incremental: the predictions of the ANN#1 were based on the applied load and post-

processing procedures used after sample production; the predictions of the ANN#2 also 

included the order of application of post-processing procedures; the predictions of the 

ANN#3 further included the position of a sample in the production chamber; finally, 

predictions by ANN#4 included build orientation and thickness of allowance for 

manufacturing. The four ANNs were trained on 92 datasets and validated on 20 datasets. 

The processes of training and validation were repeated to check for stability of the results. 

The differences between the predictions of the ANNs and experimental data, quantified by 

standard statistic descriptors, were used to measure the predictive abilities of the ANN. 

Since the basic difference between the ANNs is the structure of their inputs, i.e., the 

production conditions and post-processing conditions used to calculate their predictions, 

the differences between the predictive abilities of the ANNs were attributed to the 

significance of the influence of the respective DMLS production process factors. 

The approach was verified by comparison of its results to the ANOVA results for 

the cases where ANOVA gave well definite answers. Much higher values of coefficient of 

determination R2 and correlation coefficient r of the ANN#1 in comparison with a common 

S-N curve indicate that post-processing procedures influence fatigue behaviour of MS1 in 

finite life domain. Furthermore, considerably higher values of coefficient of determination 

R2 and correlation coefficient r of ANN#2 in comparison with ANN#1 shows that the order 

of the post-processing procedures also influences the fatigue behaviour of MS1. Both 

conclusions agree with the previously published results of the ANOVA, which verifies the 

approach presented in the paper. 

The most important result of application of the ANN in the presented research is 

the assessment of the influence of the factors whose relevance for the fatigue response of 

MS1 produced by DMLS cannot be determined by ANOVA. Higher values of coefficient 

of determination R2 and correlation coefficient r of ANN#3 in comparison with ANN#2 

indicates that the position of a sample in the production chamber with respect to the inert 

gas flow has some influence on fatigue behaviour of MS1 in finite life domain. On the 

other hand, essentially the same values of coefficient of determination R2 and correlation 

coefficient r of ANN#4 in comparison with ANN#3 suggest that the build orientation and 



thicknesses of allowance for machining higher than 0.5 mm do not influence fatigue 

behaviour of MS1 in finite life domain. 

The obtained results are of practical importance for reduction of high costs of 

experimental studies of fatigue behaviour of MS1 produced by DMLS. Besides, they bring 

useful directions for development of computational tools for prediction of fatigue life in 

finite life domain of MS1 produced by DMLS.  

It is also important that the approach presented in the paper may be applied to other 

materials, and even generalized to many other cases when ANOVA does not give definite 

answers concerning the influence of certain factors, even beyond the fields of materials 

and engineering. 

The drawback of the approach arises from the application of the ANNs as the 

computational tool: the approach may establish the influence of a certain factor on the 

output quantity, but it does not reveal the nature of that influence or the analytic relationship 

between the factor and the output quantity. However, it is also the case with majority of 

statistic methods, and with the ANOVA in particular. 

Finally, while the approach presented in this paper uses ANNs an alternative way 

to look at the experimental data already analysed by statistical methods, it still remains 

limited to the information contained in that data. For that reason, the research presented in 

this paper does not address some important aspects of fatigue, such as the influence of the 

mean stress on fatigue resistance. Tests were run according to ISO-1143 standard that 

comprises only loading with R = –1. Further research is indeed necessary to better 

understand the fatigue behaviour of MS1, but this point is not particularly related to the 

methodology proposed and studied in this paper. 
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