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Abstract: In this work, the fracture mechanics properties of polyamide (PA) specimens manufactured
by the selective laser sintering (SLS) technology are investigated, in which an embedded crack-like
notch was inserted in the design and produced during the additive manufacturing (AM) phase.
To cover a wide variety of mode I/II mixity levels, the inclined asymmetrical semicircular specimen
subjected to three points loading (IASCB) was employed. The investigation was carried out by
analyzing the full displacement field in the proximity of the crack tip by means of the digital image
correlation (DIC) technique. To characterize the material, which exhibits a marked elastic-plastic
behavior, the quantity J-integral was evaluated by two different methods: the first one exploits the
full fields measured by the DIC, whereas the second one exploits the experimental load–displacement
curves along with FEM analysis. The DIC methodology was experimentally validated and proposed
as an alternative method to evaluate the J-integral. It is especially suited for conditions in which it is
not possible to use the conventional LDC method due to complex and possibly unknown loading
conditions. Furthermore, results showed that the AM technique could be used effectively to induce
cracks in this type of material. These two aspects together can lead to both a simplification of the
fracture characterization process and to the possibility of dealing with a wider number of practical,
real-world scenarios. Indeed, because of the nature of the additive manufacturing process, AM crack-
like notches can be sintered even having complex geometry, being three-dimensional and/or inside
the tested structure.

Keywords: additive manufacturing; selective laser sintering; polyamide; nylon; fracture toughness;
J-integral; mixed-mode I-II; IASCB specimens; digital image correlation

1. Introduction

Selective laser sintering (SLS) is a very popular and widespread technology among
additive manufacturing, which is nowadays exploited in many different fields, from in-
dustrial design to architecture or medical devices. It enables the manufacture of complex
geometries, which would be hard or even impossible to obtain through traditional subtrac-
tive techniques. The working principle of the SLS is based on the use of a laser to sinter
powder layer-by-layer from the bottom-up, in this way, building the object section-by-
section. One of its advantages is the capability of processing a large variety of materials [1],
such as metals, polymers, ceramics or wax. One drawback, however, is that the mechanical
properties of the sintered product are anisotropic, depending on the direction in which
the geometry is built up. As a consequence, the buildup direction is to be carefully chosen
and becomes an important process parameter, in particular when dealing with the design
of components characterized by their structural properties [2]. In this work, the fracture
mechanics properties of polyamide (PA), sintered via the selective laser sintering (SLS)
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technology, are investigated. The specimens have the peculiarity of being sintered with
embedded crack-like notches (sharp notches). The advantage of directly sintering artificial
crack is that this way, there is very little limitation in the position and orientation of the
crack-like notch to manufacture, differently from the case in which traditional manufactur-
ing methods are used. This allows one to be able to tackle even complex three-dimensional
fracture mechanical problems. The possibility of sintering artificial crack-like notches
during the SLS process was investigated by T. Brugo et al. [3], showing the feasibility of the
approach. The same method was then successfully applied in [4] to study the fracture be-
havior of high-strength metallic material. A similar approach was also successfully applied
to predict fracture loads of 3D-Printed ABS specimens, in which a pre-crack is embedded
in the additive manufacturing process, this time using fused-deposition modeling (FDM)
technology [5].

In the literature, two main types of experimental setups can be found to investigate the
fracture behavior of mode I/II mixity: the first one is based on asymmetrical rectangular
specimens, such as [6,7], the modified compact tension (CT) specimen [8] or the mixed-
mode bending (MMB) test [9]. This latter method allows one to cover a spectrum of different
mode ratios by varying the length of the loading lever. The second one exploits disc-like
specimens, such as the Brazilian disc (BD) [10], the semicircular bend (SCB) [11] specimen,
the asymmetric semicircular bend (ASCB) [12,13] specimen and the Inclined edge-cracked
semicircular bend (IASCB) [14,15] specimen. In this study, the IASCB specimen subjected
to three-point bend loading (the test configuration is described in detail in Section 2.2)
was used. This setup permits to study of a large range of mode I/II mixity levels without
requiring an elaborate loading fixture. The IASCB specimens were sintered with different
crack-like notch angles and tested on different support spans. In three of them (for pure
mode I), the crack was manually induced, with the scope of carrying out a comparison
with the ones with the sintered crack-like notch.

The digital image correlation technique (DIC) was exploited to determine the fracture
behavior of the material. Together with the electronic speckle pattern interferometry
(ESPI) [16], the DIC is one of the most popular optical techniques used to evaluate the full
displacement and strain field [17]. The main advantage of the DIC is that it only requires
cameras of adequately high resolution and an algorithm to perform the correlation between
the images, which is carried out by exploiting a speckle pattern (usually spray-painted) on
the surface of the sample. This pattern serves as an aid for the correlation algorithm, which
is based on matching subsets of corresponding pixels in consecutive images. Consequently,
the relative displacement may be measured and thus be used to quantify the deformation.
In [18,19], the DIC technique was used to investigate and characterize the fracture and
fatigue behavior of a brittle material, namely the asphalt concrete, by exploiting the SCB
test configuration. The DIC system used in [19] has the peculiarity of being composed of
two cameras, which makes it a stereo DIC system.

In the case study, since the specimens exhibit a strong elastic-plastic behavior, the J-
integral was chosen as the fracture characterization parameter. In fact, the stress intensity
factors (SIFs) are suitable parameters only in the case of material that can be considered
linear elastic. The J-integral, conversely, can be successfully used to characterize the
fracture mechanics behavior of elastic-plastic material, such as a wide range of tough
polymers, as stated in the standard ASTM D6068-96 [20]. The J-integral was originally
proposed by Rice [21] and represents the strain energy release rate or energy per unit
fracture surface area of a material. It is a common parameter to characterize near-crack-tip
deformation filed in elastic and elastic-plastic material. Usually, the J-integral is calculated
from the integration of the experimental load–displacement curve (henceforth named
LDC), knowing the geometry factors previously obtained by finite element analysis (FEM).
This procedure is usually adopted in standards such as the ASTM D6068-96 for CT and SEB
specimens [20]. However, this technique is suitable only for laboratory tests in which the
geometry factors for the specific specimen geometry are previously known, and the loading-
displacement curve can be measured. Conversely, on a complex structure under operating
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conditions, it is difficult or even impossible to compute the geometrical factors and the load–
displacement boundary conditions for the specific spot in which the crack was nucleated.
An alternative method consists of computing the J-integral from the displacement fields
around the crack tip, measured by DIC. The main advantage of this technique is that
it can be performed directly on the structure, without the need of previously knowing
neither the geometrical factors nor the loading boundary conditions. The DIC-based
methodology consists of numerically computing the J-integral along a rectangular contour
of the DIC grid [22–26]. For the J-integral calculation, displacement, strain and stress maps
are needed. The displacement field is obtained directly from the DIC; the strain field can
be computed by numerical differentiation of the former, whereas the stress maps can be
computed from the strain maps, given that the constitutive equations of the material are
known. The material has thus to be previously characterized, for example, in terms of
Ramberg–Osgood parameters, as done for instance in [23]. The J-integral values calculated
by the DIC-based methodology were finally compared to the ones obtained employing the
LDC method.

2. Materials and Methods
2.1. Specimen Fabrication

The specimens were produced by an EOS Formiga P100 selective laser sintering
(SLS) machine (EOS GmbH, Krailling, Germany), using fine polyamide PA 2200 powder
purchased from Prototal Plastic Design and Service (Götene, Sweden), the mechanical
properties experimentally determined by three-point bending tests are shown in Table 1.
The laser-sintered specimens were manufactured from mixed powder, recycled and new
in equal proportions. During the fabrication via the SLS technology, the specimens were
oriented with the thickness in the built direction.

Table 1. Mechanical properties of the polyamide (PA) 2200 powder.

Property Value

Flexural Young’s modulus 2.1 ± 0.1 GPa
Flexural Yield strength 55 ± 3 MPa

Flexural strength 68 ± 2 MPa

2.2. IASB Specimens

The IASCB specimen is a semicircular disk of radius R and thickness t with an em-
bedded radial edge-crack of length a, tilted with respect to the load direction of an angle α.
The fracture test consists of the application of a vertical force P, with the specimen located
on two bottom supports, as shown in Figure 1a. By varying some geometrical parameters,
such as the support spans S1 and S2 and the crack tilt angle α, it is possible to obtain a large
variety of mixed I/II modes. The values of t, R, and a were identical for all the specimens
(t = 6 mm, R = 60 mm, a = 24 mm), and S1 was kept fixed at 42 mm. The different mode
mixity was obtained by choosing the suitable combination of S2/R and α. In particular,
when the bottom supports are located symmetrically to the crack line (i.e., when S1 = S2)
and the crack line is parallel to the load (i.e., when α = 0◦), the specimen is subjected to
pure opening mode I. With different combinations of S2/R and α, mixed-mode I/II can be
obtained. In Figure 1b, a different test configuration used to determine the pure indentation
behavior is shown.



Materials 2021, 14, 1084 4 of 15Materials 2021, 14, x FOR PEER REVIEW 4 of 15 
 

 

 
Figure 1. Geometrical features and loading conditions of the inclined asymmetrical semicircular 
specimen subjected to three points loading (IASCB) specimen; (a) fracture test; (b) indentation test. 

Following the approach adopted in [4], the crack-like notch was initiated in two dif-
ferent ways: 12 samples had the notch embedded during the additive manufacturing pro-
cess (named AM specimens), while the other 3 samples had the notch initiated manually 
by a razor blade (named SM specimens, in which SM stands for subtractive manufactur-
ing). The AM specimens were manufactured with an angle α of 0° and 10° and tested, 
changing the support spans S2, while S1 was kept at 42 mm for all the tests to obtain dif-
ferent mode I/II mixity. The AM specimens with crack-like notch angle α of 0° were only 
tested with symmetric configuration (pure mode I). Table 2 presents the specimens tested 
along with their typology, the values of α; the supports spans S1 and S2, the number n of 
tested specimens and the mixed-mode ratio calculated as 𝑀 = 2 𝜋⁄ atanሺ𝐾ூ 𝐾ூூ⁄ ሻ. 

Table 2. Geometrical parameters of the test configurations. 

Type α (°) S1 (mm) S2 (mm) n Mode Me 

SM 0 42 42 3 Mode I 1 
AM 0 42 42 3 Mode I 1 
AM 10 42 42 3 Mixed I/II 0.77 
AM 10 42 18 3 Mixed I/II 0.48 
AM 10 42 10.2 3 Mode II 0.12 

2.3. Experimental Setup 
Displacement controlled fracture tests were performed by using a hydraulic tensile 

machine. The experimental setup is shown in Figure 2a. The 2D DIC system used to eval-
uate the full displacement field around the crack tip (in a window of 12 mm × 9 mm) 
consisted of a 10 MP Basler ace acA3800-14uc camera (Basler, Ahrensburg, Germany) 
equipped with Basler lens C125-2522–5 M-P f25 mm (Basler, Ahrensburg, Germany) and 
a custom led lamp. The images were acquired by exploiting the GOM Snap 2D free soft-
ware and processed by GOM Correlate (GOM GmbH, Braunschweig, Germany). A black 
speckle pattern was spray-painted on the specimens (which naturally exhibits a white 
surface), as required by the digital correlation algorithm. 

The DIC parameters were set according to the study of Palanca et al. [27], as follows: 
19 pixels facet size, 16 pixels point distance, 8 facets spatial filter (median) and 3 time-step 
temporary filters (median). This parameter combination allows obtaining an optimal com-
promise between the spatial resolution and the precision of the displacement field meas-
urement around the crack tip. Figure 2b shows an example of a strain field correlated by 
the DIC software (y-strain, 10–42–42 test configuration). 

Figure 1. Geometrical features and loading conditions of the inclined asymmetrical semicircular
specimen subjected to three points loading (IASCB) specimen; (a) fracture test; (b) indentation test.

Following the approach adopted in [4], the crack-like notch was initiated in two
different ways: 12 samples had the notch embedded during the additive manufacturing
process (named AM specimens), while the other 3 samples had the notch initiated manually
by a razor blade (named SM specimens, in which SM stands for subtractive manufacturing).
The AM specimens were manufactured with an angle α of 0◦ and 10◦ and tested, changing
the support spans S2, while S1 was kept at 42 mm for all the tests to obtain different mode
I/II mixity. The AM specimens with crack-like notch angle α of 0◦ were only tested with
symmetric configuration (pure mode I). Table 2 presents the specimens tested along with
their typology, the values of α; the supports spans S1 and S2, the number n of tested
specimens and the mixed-mode ratio calculated as Me = 2/πatan(KI/KI I).

Table 2. Geometrical parameters of the test configurations.

Type α (◦) S1 (mm) S2 (mm) n Mode Me

SM 0 42 42 3 Mode I 1
AM 0 42 42 3 Mode I 1
AM 10 42 42 3 Mixed I/II 0.77
AM 10 42 18 3 Mixed I/II 0.48
AM 10 42 10.2 3 Mode II 0.12

2.3. Experimental Setup

Displacement controlled fracture tests were performed by using a hydraulic tensile
machine. The experimental setup is shown in Figure 2a. The 2D DIC system used to
evaluate the full displacement field around the crack tip (in a window of 12 mm × 9 mm)
consisted of a 10 MP Basler ace acA3800-14uc camera (Basler, Ahrensburg, Germany)
equipped with Basler lens C125-2522–5 M-P f25 mm (Basler, Ahrensburg, Germany) and a
custom led lamp. The images were acquired by exploiting the GOM Snap 2D free software
and processed by GOM Correlate (GOM GmbH, Braunschweig, Germany). A black speckle
pattern was spray-painted on the specimens (which naturally exhibits a white surface),
as required by the digital correlation algorithm.

The DIC parameters were set according to the study of Palanca et al. [27], as follows:
19 pixels facet size, 16 pixels point distance, 8 facets spatial filter (median) and 3 time-step
temporary filters (median). This parameter combination allows obtaining an optimal
compromise between the spatial resolution and the precision of the displacement field
measurement around the crack tip. Figure 2b shows an example of a strain field correlated
by the DIC software (y-strain, 10–42–42 test configuration).
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Figure 2. (a) Experimental setup; (b) y-strain field around the crack tip obtained by the digital image correlation (DIC) for a
10–42–42 test configuration.

2.4. J-Integral Computation via the LDC Method

As regards the IASCB specimens, the geometry factors necessary for the computation
of the J-integral by the load–displacement curve method are not available in the literature,
to the best of the authors’ knowledge. Therefore, the geometry factors were numerically
computed for different specimen configurations in order to study the mode I-II mixity
ranging from pure mode I to pure mode II. The geometry factors were then used to
calculate the J-integral for the polyamide specimens by exploiting the experimental load–
displacement curves (LDC method).

2.4.1. FEM Calculation of the J-Integral Geometry Factors

The J-integral geometry factors were computed by using the finite element commercial
software Ansys 2019 (Ansys Inc., Canonsburg, Pennsylvania, USA). The IASCB speci-
men was discretized in approximately 4000 quadratic eight-node plane strain elements
(PLANE 183), as shown in Figure 3. Since a high stress-gradient exists around the crack
tip, the surrounding area was discretized with a fine radial mesh. The geometry factors
are independent of the applied load, specimen thickness and material properties. Con-
sidering the arbitrariness of these factors, the simulation was run with a vertical load of
1 kN, the specimen thickness t was set equal to 1 mm, and the material was modeled
linear elastic, with Young’s modulus E equal to 200 GPa and a Poisson ratio ν equal to 0.3.
The J-integral was evaluated by the FEM software, which exploits a function based on the
domain integral method proposed by Shih [28]. Six contours surrounding the crack tip
were considered, and the result obtained from the last one was the one considered (results
converged after three contours).

By exploiting the results obtained from the FEM analysis, the dimensionless geometry
factors can be computed according to Equation (1), similarly to the standard ASTM D
6068-96 for CT and SEB specimens [20].

η =
JFEM

UFEM
t (R− a) (1)

where JFEM is the J-integral, expressed in mJ/mm2, and UFEM is the work done by the
external load, expressed in mJ, both evaluated by the FEM software.
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2.4.2. J-Integral Computation from the Load–Displacement Curve Results

The geometry factors were then used to calculate the J-integral for the polyamide spec-
imens by exploiting the experimental load–displacement curves, according to Equation (2):

J = η
U

t (R− a)
(2)

where U is the energy required to extend the crack and is obtained by subtracting to the total
energy UT the indentation energy Ui. The total energy is obtained by integrating the load–
displacement curve up to the load at which the crack was visually observed to propagate of
1 mm, on the images acquired by the camera used for the DIC. The indentation energy Ui
was obtained by integrating the load–displacement curve measured in the indentation test
up to the displacement that corresponds to the maximum load at which the total energy
UT was evaluated. The indentation test was carried out on a specimen with the same
geometry of the reference one but without the notch and an adjacent central support span,
as described in Figure 1b.
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2.5. J-Integral Computation via the DIC Method

J-integral represents the strain energy release rate or energy per unit fracture surface
area of a material. It is mathematically defined as a line-integral, as shown in Equation (3):

J =
∫

Γ

(
Wdy− ti

∂ui
∂x

ds
)

(3)

where Γ is the integration path, W is the strain energy density, t = σn̂ is the surface
traction vector (n̂ is normal to the curve Γ and σ is the Cauchy stress tensor). One property
of the J-Integral is that it does not depend on the path considered. Since the J-integral
is to be evaluated starting from the DIC data, which are defined on a rectangular grid,
the definition of the J-Integral is to be adapted to the case of a discrete domain. If the
spacing between the grid points is low enough, this is an acceptable approximation, and it
is an approach followed, for example, in [24–26]. The integration can be carried out by
using the trapezoidal rule. For what concerns the integrand function, henceforth referred
to as f, in the discrete domain can be rewritten as shown in Equation (4), being ∆l the
path increment:

f ∆l = W∆y− ti
∆ui
∆x

∆s (4)



Materials 2021, 14, 1084 7 of 15

Expanding the term of the traction vector, considering the hypothesis of plane stress,
and expanding the summation on the index i leads to Equation (5):

f ∆l = W∆y−
[

∆ux

∆x
(
nxσx + nyτxy

)
+

∆uy

∆x
(
nyσy + nxτxy

)]
∆s (5)

By breaking the rectangular path into five parts, each part can be further simplified,
as shown in Equations (6)–(9) and referring to Figure 4.
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Path Γ1 and Path Γ5: n̂ = (−1, 0), ∆s = −|∆gy|, ∆y = −|∆gy| where |∆gy| is the
distance (constant and ≥0) between 2 points of the DIC grid along the y-direction:

f ∆l =
(
−W − ∆ux

∆x
σx −

∆uy

∆x
τxy

)
|∆gy| (6)

Path Γ2: n̂ = (0,−1), ∆s = |∆gx|, ∆y = 0 where |∆gx| is the distance (constant and
≥0) between two points of the DIC grid along the x-direction:

f ∆l =
(

∆ux

∆x
τxy +

∆uy

∆x
σy

)
|∆gx| (7)

Path Γ3: n̂ = (+1, 0), ∆s = |∆gy|, ∆y = |∆gy|

f ∆l =
(
+W − ∆ux

∆x
σx −

∆uy

∆x
τxy

)
|∆gy| (8)

Path Γ4: n̂ = (0,+1), ∆s = −|∆gx|, ∆y = 0

f ∆l =
(

∆ux

∆x
τxy +

∆uy

∆x
σy

)
|∆gx| (9)

To compute f in each path, the stress components are needed.
The stress components are obtained from the strain components using the elastic-

plastic constitutive relations. To model the stress–strain relation, the Ramberg–Osgood
equation (Equation (10)) is used:

εe

ε0
=

σe

σ0
+ α

(
σe

σ0

)n
(10)
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where σe and εe are the equivalent stress and strain, σ0 and ε0 (=σ0/E) are the yield stress
and strain, n, α and E the hardening exponent, the material constant and the elastic modulus,
respectively. The equivalent Von Mises strain can be computed as shown in Equation (11).
The strain along the z-direction can be computed according to Hooke’s law in the case
of plain stress from the x and y components as εz = −ν

(1−ν)

(
εx + εy

)
. Since the tangential

stresses are null on the plane, εxz and εyz are equally null:

εe =
2
3

√
εx2 + εy2 + εz2 − εxεy − εxεz − εyεz + 3εxy2 (11)

The Ramberg–Osgood parameters α, n and σ0 can be obtained by an experimental
characterization of the material: for that purpose, a series of three-point bending tests were
performed, and Equation (10) was then fitted on the stress–strain curves experimentally
measured. With these parameters available, it is then possible to compute the equivalent
stress σe by using Equation (10) and by exploiting the equivalent strain εe.

Following the approach used in [23], the constitutive relation can be written as shown
in Equation (12):

εij =
1 + ν

E
sij +

1− 2ν

3E
σkkδij +

3
2

αε0

(
σe

σ0

)n−1 sij

σ0
(12)

where ν, δij and sij are the Poisson’s ratio, Kronecker delta and the stress deviator, respec-
tively. The stress deviator is defined as shown in Equation (13):

sij = σij −
σkk
3

δij (13)

After computing the components of the Cauchy stress tensor by exploiting
Equations (10)–(13), the strain energy density W can be computed, according to [23],
as shown in Equation (14):

W =
1
E

[
1
2

σe
2 +

1
2
(1− 2ν)

(
σxσy − τxy

2
)
+

αn
n + 1

σe
2
(

σe

σ0

)n−1
]

(14)

3. Results
3.1. J-Integral Results from the LDC Method

A complete set of geometry factors were calculated by the FEM model described in
Section 2.4.1, for the configuration with a/R = 0.4 and S1/R = 0.7, by varying the support
span S2 and the crack angle α. In this way, it was possible to cover the mode I-II mixity,
ranging from pure mode I to pure mode II. The results are reported in Table 3, and the
geometry factors are plotted in Figure 5 as a function of the S2/R for different crack angles.
As is clear from Figure 5, η increases as the S2 support span increases, while for a constant
value of S2/R, η decreases for higher values of crack angle.

Table 3. Geometry factor η for different values of S2/R and crack angle α obtained with values of a/R
and S1/R fixed, respectively, to 0.4 and 0.7.

S2/R η S2/R η S2/R η S2/R η S2/R η S2/R η

α = 0◦ α = 10◦ α = 20◦ α = 30◦ α = 40◦ α = 50◦

0.7 1.564 0.7 1.474 0.7 1.235 0.7 0.916 0.7 0.598 0.7 0.342
0.6 1.449 0.6 1.323 0.6 1.048 0.6 0.709 0.65 0.501 0.67 0.293
0.5 1.276 0.5 1.111 0.5 0.809 0.5 0.480 0.6 0.400 0.64 0.244
0.4 1.032 0.4 0.837 0.4 0.557 0.45 0.389 0.55 0.305 0.6 0.183
0.3 0.719 0.3 0.558 0.3 0.465 0.4 0.356 0.5 0.240 0.55 0.129
0.1 0.358 0.17 0.522 0.26 0.554 0.36 0.407 0.45 0.245 0.52 0.125
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The geometry factors were then used along with the experimental load–displacement
curves to compute the J-integral. An example of the load–displacement curve for the
additive manufactured specimen with a crack angle α of 10◦ and support span S1 = 42 mm
and S2 = 18 mm (AM-10-42-18) is reported in Figure 6. The red curve represents the notched
specimen, and the blue curve the unnotched one; the latter used to evaluate the indentation
energy Ui. The black dotted curve represents the 5% augmented tangent line with respect
to the initial slope of the notched specimen, which is normally used for the stress intensity
factor calculation. In the case study, however, the maximum load for the notched specimen
curve is higher than 10% of its intersection with the dotted tangent line, which makes this
method invalid according to the ASTM D5045-14 standard [29]. For this reason, the crack
propagation start was visually evaluated by examining the frames recorded by the DIC
camera. In compliance with the standard ASTM D6068-96 [20], the crack was considered to
start to propagate when it reached an extension of 1 mm. The load corresponding to that
time instant was then read from the load–displacement curve (roughly 6000 N in the case
of Figure 6). The notched and the indentation curves are then integrated up to this load
to compute the energy UT and Ui, respectively, used for the calculation of the J-integral
according to Equation (2).
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3.2. J-Integral Computation via the DIC-Based Method

In this section, the results of the J-integral obtained by the DIC-based and LDC
methods are presented and compared.

Figure 7 shows the path around the crack tip considered for the J-integral computation.
The points belonging to the zone within 0.3 mm from the crack axis were removed since,
in that region, the data were particularly noisy. In this region, in fact, due to the massive
plasticization and to the crack opening, the digital image correlation algorithm performs
poorly. The value of 0.3 mm was empirically defined based on a visual evaluation of the
measurement noise and the performance of the correlation algorithm in the proximity of
the crack boundaries. An example in which a region near the crack tip is similarly removed
can be found, for instance, in [30]. Figure 8 shows the x and y displacement and strain
maps obtained by the DIC for all the different specimen configurations tested. It can be
observed that the strain in y and in particular in x-direction increases ranging from mode I
to mode II, which implies a higher strain energy work to make the crack propagate.
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Figure 9 shows the values of the J-integral for one specimen of each configuration
on the different paths shown in Figure 7. The path index identifies the path, being the
lower, the shorter path. A certain variability (up to 30%) of the J-integral can be observed
on the different paths considered. The uncertainty can be attributed to two main reasons.
The first one is the noise in the displacement and strain maps (particularly in these latter,
due to numerical differentiation) obtained by the DIC. The second one is that the strain
and the stress occurring in the proximity of the crack tip cannot be truly represented by
the material model (Ramberg–Osgood) and the Poisson ratio used (which was considered
constant) implemented in the J-integral model. However, the variability of the J-integral
computation can be mitigated by adjusting the DIC spatial and temporal filtering and by
averaging the J-integral values along different paths, similarly to [25]. As suggested in [31],
it still can be used as a fracture toughness parameter, giving that it is computed over a
larger domain than just a contour. For this reason, the J-integral was computed as the
average of the J-Integral obtained from the contours shown in Figure 7.
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4. Discussion

In Table 4, the J-integral computed by the LDC and the DIC-based methods for
different mode mixity is summarized. Figure 10 shows a comparison of the mean values
obtained by the two methods. In Figure 10a the comparison is made by a bar plot, whereas
Figure 10b has the mode mixity ratio Me as the x-axis.

Table 4. Results of the J-integral computed with the load–displacement curves (LDC) method and with the DIC method.

Specimen
Configuration Me LDC Method J

(mJ/mm2) Jmean σ(J) DIC Method J
(mJ/mm2) Jmean σ(J) LDC vs. DIC

∆%

SM-0-42-42-1
1

5.40
5.14 0.29

4.95
4.66 0.30

−8.33
SM-0-42-42-2 4.82 4.68 −2.90
SM-0-42-42-3 5.20 4.36 −16.15

AM-0-42-42-1
1

5.09
5.77 0.59

6.42
5.99 0.45

26.13
AM-0-42-42-2 6.12 5.52 −9.80
AM-0-42-42-3 6.10 6.03 −1.15

AM-10-42-42-1
0.77

4.30
4.50 0.25

4.98
4.64 0.30

15.81
AM-10-42-42-2 4.78 4.55 −4.81
AM-10-42-42-3 4.42 4.40 −0.45

AM-10-42-18-1
0.48

5.56
5.79 0.21

6.16
6.12 0.38

10.79
AM-10-42-18-2 5.95 6.48 8.91
AM-10-42-18-3 5.87 5.72 −2.56

AM-10-42-10.2-1
0.12

9.03
9.13 0.92

9.59
10.44 0.82

6.20
AM-10-42-10.2-2 8.26 10.50 27.12
AM-10-42-10.2-3 10.10 11.23 11.19

It can be observed that the difference between the values computed by the DIC-
based method and the conventional LDC method (calculated as (DIC-LDC)/LDC*100)
is comparable to the experimental errors of each method (calculated as the standard
deviation of the three values obtained for each configuration). This can be visually observed
in Figure 10b, in which the error bands of the graphs of the two methods overlap to a
significant extent.

Concerning the notch induction by the conventional subtractive method (by razor
blade incision) or by additive method (by directly printing it), some considerations can be
made. The J-integral mean value of the notch induced by the AM method is 12.2% higher
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than the one obtained by the SM method, but it is within the experimental error. This can
be attributed to a less sharp crack-like notch in the case of AM specimens, which leads to a
lower stress concentration in the area near the crack tip, and therefore to a higher apparent
fracture toughness value.

By plotting the J-integral as a function of the mode mixity ratio Me, it can be observed
that the curve has a minimum at a mixity ratio equal to 0.77 and then it increases up to pure
mode II. Generally, in the literature [4], higher fracture toughness values are experimentally
observed for mode II with respect to mode I. This is due to a wider stress state distribution
for mode II than mode I, which leads to higher fracture toughness values.
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5. Conclusions

In this work, the mixed-mode I/II J-integral was evaluated for polyamide ASCB
specimens manufactured by the additive SLS process. A non-conventional method to
produce crack-like notches during the manufacturing process, by embedding them in the
geometrical modeling phase, was investigated and validated (the difference of the results
in mode I of about 12%). The capability of manufacturing cracks with additive techniques
is a powerful tool that can be useful for investigating the fracture mechanics behavior in
the case of complex crack geometry, even three-dimensional and/or inside the structure.

Two different methods for evaluating the J-integral were compared: the conventional
one based on the load–displacement curve and a less conventional one based on the evalu-
ation of the J-integral contour by exploiting the measured full-field displacement and strain
by DIC. The results obtained with this latter method were statistically comparable with
the ones obtained with the former method, and the DIC method was thus demonstrated
to be a valid option for investigating the fracture behavior in the case of sintered cracks
on elastic–plastic material. The DIC methodology has the advantage of being contactless
and can be used to evaluate the J-integral in a condition where it is not possible to use the
conventional LDC method due to complex and often not known loading conditions of the
structure. By combining the DIC methodology with the AM manufactured cracks, it is,
therefore, possible to lay the foundations for an investigation approach that is more flexible
than the standard one. Moreover, it can be easily implemented and be applied to a wider
number of practical cases and real-world scenarios.
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