

Production costs of additive manufacturing

Because it costs

Michele Monti

Contents

- Structure of the AM production costs
- PBF production costs
- Calculation of production costs of a batch of products
- Estimation of production costs of an individual product

How can we NOT calculate AM production costs?

- Per unit volume of a product
- Per unit mass of a product
- Depending of complexity of the product shape

How can we calculate AM production costs?

- Depends on the AM technology
 - Technologies based on melted wire
 - Technologies based on solidification of liquids
 - Powder bed fusion (PBF) technologies

How can we calculate AM production costs?

- Depends on the AM technology
 - Technologies based on melted wire
 - Technologies based on solidification of liquids
 - Powder bed fusion (PBF) technologies
 - Selective laser sintering (SLS)
 - Direct laser metal sintering (DMLS)
 - Multi-jet fusion (MJF)

PBF technologies

PBF technologies

- Simultaneous manufacturing of a set of products (batch) during a single production process in a production chamber
- "Collective" production

THERE ARE NO PRODUCTION COSTS OF INDIVIDUAL PRODUCT

THERE ARE ONLY PRODUCTION COSTS OF A BATCH

Activity chain model PBF processes

Production costs structure

- Direct production costs
- Indirect production costs

$$C = C_D + C_I$$

Direct production costs

Direct production costs

Sum of direct costs of all activities

$$C_D = C_{model-D} + C_{ass-D} + C_{setup-D} + C_{build-D} + C_{rem-D} + C_{blast-D}$$

- Labour costs
- Material costs
- Energy costs

$$C_{a-D} = C_{a-L} + C_{a-M} + C_{a-W}$$

Direct production costs

- Labour costs
 - Designer costs
 - Modeling
 - Assembly
 - Operator costs
 - Preparation
 - Removal
 - Blasting

 $C_{a-L} = C_{des}^T \cdot T_a, a = model, ass$

 $C_{a-L} = C_{oper}^T \cdot T_a, a = setup, rem, blast$

Direct production costs

- Material costs
 - Building
 - Powder
 - Fusion agent and detailing agent (MJF)
 - Blasting
 - Abrasive

Direct production costs

- Material costs building
 - Mixture
 - Used powder
 - Fresh, non-used powder (r·100%)
 - Fixed consumption
 - Variable consumption

$$C_{build-M-powder} = C_{powder}^{Q} \cdot r \cdot \rho_{powder} \cdot \left(S_{bin} \cdot h + V_{fix}\right)$$

- Decisive role of the height of a batch
 - Assembly designer skills
 - Inter-part distance limitations
 - Anisotropy of accuracy of production process
 - Number of products in a batch
 - Requested production time

Direct production costs

• Variable material costs - orientation

Direct production costs

• Variable material costs - assembly

15 EUR/part

3 EUR/part

5 EUR/part

3 EUR/part

Direct production costs

- Energy costs
 - Preparation
 - Fixed energy costs
 - Building
 - Duration
 - Height of a batch
 - Spatial distribution of the products in a batch
 - Blasting
 - Blasting cabinet consumption
 - Air compressor consumption

$$C_{prep-W} = C_W^{kWh} \cdot T_{prep} \cdot P_{prep}$$

$$C_{build-W} = C_W^{kWh} \cdot T_{build} \cdot P_{build}$$

$$C_{blast-W-cab} = C_{W}^{W} \cdot T_{blast} \cdot P_{cab}$$

$$C_{blast-W-comp} = C_{W}^{W} \cdot T_{blast} \cdot P_{comp} \cdot \frac{v_{cab}^{T}}{T}$$

Indirect production costs

- Equipment costs
- Overhead costs
- Other indirect costs

Exceptionally high with all AM technologies

Indirect production costs

- Equipment costs
 - Machine costs
 - Software costs
 - Consumables costs

Indirect production costs

- Time unit costs of equipment
 - Machine time unit costs
 - Purchase and deprecation costs
 - Maintenance costs
 - Software time unit costs
 - Number of licenses
 - Purchase costs
 - Annual re-activation costs
 - Consumables time unit costs
 - Estimation of annual consumption $C_{cons-k}^T = \frac{C_{cons-k} \cdot n_{cons-k}^m}{u \cdot T^{ann}}$

Indirect production costs

Overheads

- Existing without production
- Management and administration
- Renting/purchase of rooms
- Heating, water, electricity
- Other indirect costs
 - Connected to production
 - Material handling and disposal
 - Transport

$$C_{over} = R_{over} \cdot \left(C_D + C_E + C_X\right)$$

$$C_{X-k} = \frac{C_{X-k}^{per}}{u_e \cdot T_k^{per}} T_{build}$$

Product costs

- A single product costs?!
 - Common costs independent of production volume
 - Number of products relevant, but not straightforward
 - Batch volume and height
- Rough estimation assumptions
 - Modelling and overhead costs increase with number of types of products
 - Assembly, preparation, removal and other indirect costs increase with number of products
 - Building costs increase with volume of products
 - Blasting costs increase with surface of products

Product costs

- *t* product types
- n_k products of type k (k=1,2,...,t)
- V_k total volume of products of type k
- S_k total surface of products of type k

$$\begin{aligned} x_{n-k} &= \frac{n_k}{\sum_k n_k} \qquad x_{V-k} = \frac{V_k}{\sum_k V_k} \qquad x_{S-k} = \frac{S_k}{\sum_k S_k} \\ c_k &= \frac{1}{n_k} \left\{ \frac{C_{model} + C_{over}}{t} + \left(C_{ass} + C_{prep} + C_{rem} + C_X\right) \cdot x_{n-k} + C_{build} \cdot x_{V-k} + C_{blast} \cdot x_{S-k} \right\} \end{aligned}$$

Production costs calculation

- SLS technology 66 parameters
- MJF technology 76 parameters
- DMLS technology
 - Support costs
 - Inert gas consumption
 - up to 130 parameters

Coordinator FAKULTET ZA MASINSTVO I GRADJEVINARSTVO U KRALJEVO UNIVERZITETA U KRAGUJEVCU www.mfkv.rs

Partners ALMA MATER STUDIORUM - UNIVERSITA DI BOLOGNA www.unibo.it DIN department

STUDIO PEDRINI SRL www.studiopedrini.it

TOPOMATIKA DOO www.topomatika.hr

PLAMINGO DOO www.plamingo.net

HORIZON 2020

The framework programme for research and innovation

734455 (A_MADAM) - MSCA-RISE Call: H2020 MSCA RISE 2016 Topic: MSCA-RISE-2016 Unit: REA/A/03

Thank you!

PROJECT SUPPORTED BY Commission